

Use & Relevance of PAGASA Climate Information Services in NWRB

PAGASA 100th National Climate Outlook Forum (March 22, 2018)

NATIONAL WATER RESOURCES BOARD

LEGAL MANDATES

The NWRB is the body responsible for coordinating and regulating all activities related to **water resources management** (PD 424, PD 1067) including water utilities operation (PD 1206).

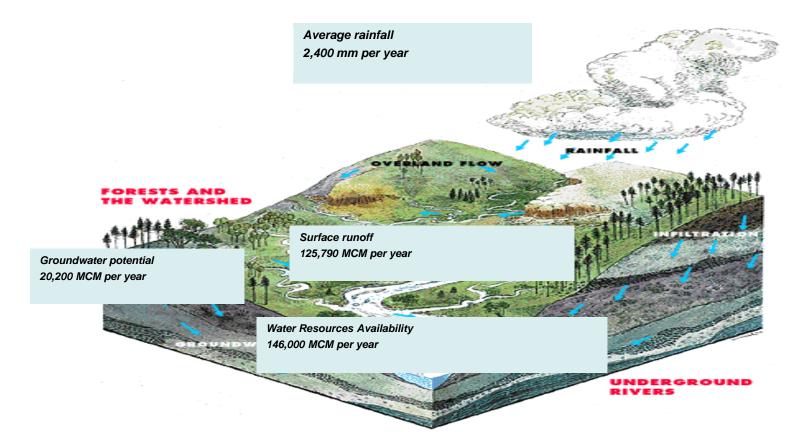
SERVICES/FUNCTIONS

NATIONAL WATER RESOURCES BOARD

Policy Formulation,
Evaluation and
Coordination of Water
Resources Programs

Water Use Regulation

Regulation of Water Utilities Operation


Monitoring of Water
Appropriation and
Utilization

Hydrometeorological data and climate information is vital

Policy Formulation, Evaluation and Coordination of Water Resources Programs

• Assessment of Water Resources (i.e. Water potential/ availability) as basis for Policy Formulation and Program Evaluation

Various Water Resources Assessment Studies/Projects were conducted by NWRB wherein climate and hydrometeorological information were utilized

Development of Groundwater Management Plan which includes the Installation of Groundwater Monitoring Wells in Highly Urbanized Areas or Groundwater Constraint Areas

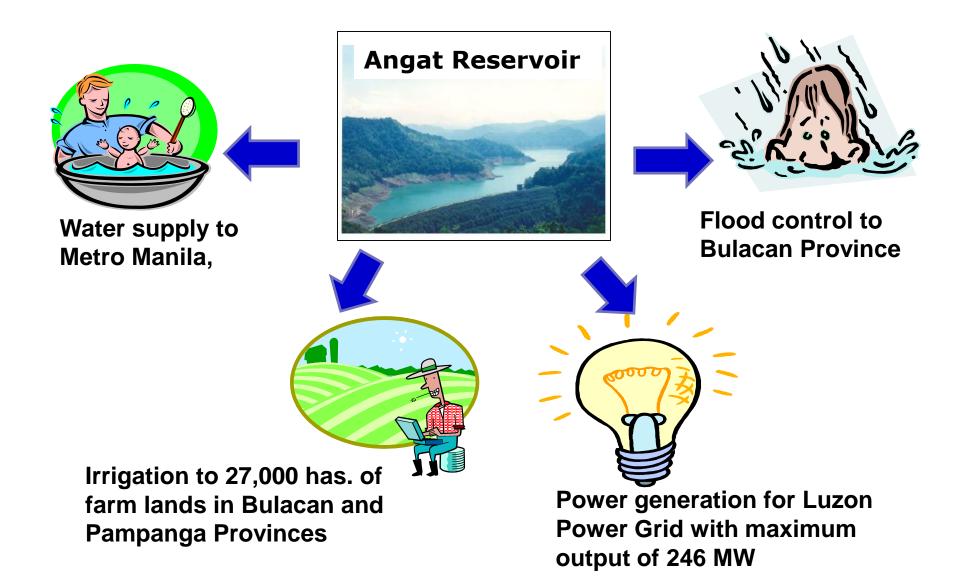
- NWRB conducts the project from 2014-onwards in nine groundwater constraint cities identified in 1998 JICA Masterplan
- The study will effectively and equitably manage groundwater resources and provide guidance document for groundwater development in the study area considering current situation as well as future impact of climate change to ensure long-term sustainability of the resource.
- The Groundwater Management plan will be used as a guide for formulating policies and for regulation of available water resources.

Water Use/Resource Regulation

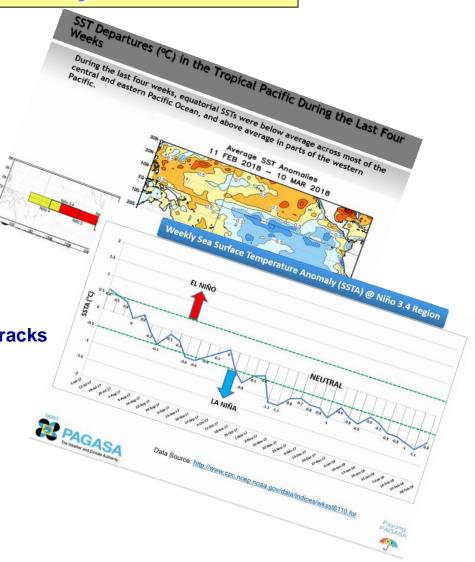
Reservoir Monitoring

Reservoirs are subject to regulation by the NWRB in accordance with Article 62 of the Water Code of the Philippines (PD 1067), which provides that:

"All reservoir operations shall be subject to rules and regulations issued by NWRB ..."



Allocation of water from Angat Reservoir


Angat Reservoir Monthly Allocation

- 1. TWG Meeting (PAGASA, NIA, NAPOCOR, AHC, MWSS, NWRB)
- 2. Reservoirs Operation and Simulation Study
 - Irrigation requirement (NIA)
 - Water Supply Requirements (MWSS)
 - Inflows (Historical Inflows)
 - Forecasted Watershed Rainfall Translated to reservoir inflows

Angat Reservoir Monthly Allocation

3. Climate Information (PAGASA)

- ENSO Update / Outlook
- Climate
 - Rainfall
 - > Temperature
 - Dry Day Forecast
 - > Tropical Cyclone Frequency/Tracks
 - > Temperature
- Probabilistic Enso Outlook
 - El Niño
 - La Niña
 - > Neutral Condition

Simulation of Angat Water Allocation

S(t) = S(t-1) + I - O

Where:

S(t) = present storage in MCM

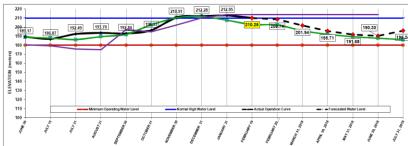
S(t-1) = previous storage in MCM

I = Inflow to the reservoir in MCM

O = Outflow in MCM (Releases for irrigation and water supply)

Forecast Watershed Rainfall (mm) Translated to Inflow (mcm) in Angat Reservoir

MONTH	RAINI	FALL	INFLOW			
February	(mm)	88.5	(mcm)	40.21		
	%Normal	106.4	% Hist.	51		
March	(mm)	57.3	(mcm)	25.9		
	%Normal	74.7	% Hist.	51		
April	(mm)	72.5	(mcm)	32.94		
	%Normal	74	% Hist.	86		
May	(mm)	236.6	(mcm)	107.51		
	%Normal	68	% Hist.	202		
June	(mm)	507.1	(mcm)	230.43		
	%Normal	167.2	% Hist.	229		
July	(mm)	1007.52	(mcm)	457.42		
	%Normal	218.8	% Hist.	272		



| Control | Cont

FORECAST WATERSHED RAINFALL for selected Dams and Lakes in (mm) and (%N)

		FOREC/	AST WATER	RSHED RA	INFALL (FEB	RUARY - JUL	Y 2017)	
	NAME	Angat Watershed	Lake Buhi	Lake Lanao	Magat Watershed	Malinao Watershed	Pantabangan Watershed	San Roque Cascade W
	MIN	14.1	199.9	75.6	0.0	89.1	30.6	6.1
FEBRUARY	MAX	95.0	308.3	109.4	51.0	95.1	100.0	16.1
	MEAN	48.5	256.0	86.2	14.9	92.2	58.8	12.8
	%NORMAL	158.6	125.6		98.0		111.1	77.4
	MIN	14.9	144.9	47.3	14.1	74.1	44.3	31.9
MARCH	MAX	68.1	205.4	97.0	65.9	75.3	98.1	42.1
WAKCH	MEAN	35.9	175.5	72.8	37.3	74.8	66.4	39.4
	%NORMAL	90.5	106.8	99.1	135.0	111.6	123.4	107.5
APRIL	MIN	26.7	59.6	34.5	42.3	45.8	56.8	54.3
	MAX	85.1	111.3	102.8	100.3	58.6	129.6	77.2
	MEAN	49.1	86.8	68.9	70.5	51.1	88.8	72.8
	%NORMAL	61.4	56.2	71.6	75.1	99.2	65.0	72.1
	MIN	231.9	169.2	125.4	221.7	110.5	199.8	312.2
MAY	MAX	258.4	220.6	259.8	356.2	125.8	264.9	403.4
IVIAT	MEAN	246.2	200.0	195.9	290.5	117.7	234.4	369.5
	%NORMAL	117.9	118.0	102.9	125.1	161.3	132.9	119.6
	MIN	245.1	235.1	196.5	168.9	145.4	192.9	335.5
JUNE	MAX	335.1	264.1	295.8	347.1	151.7	276.4	413.6
JUNE	MEAN	286.4	253.3	256.1	261.5	148.2	222.5	375.0
	%NORMAL	107.3	119.1	93.9	88.2	120.9	83.9	85.8
	MIN	256.4	247.6	212.2	343.3	119.8	307.6	754.0
JULY	MAX	425.8	262.1	284.4	815.2	129.2	608.7	961.5
JULT	MEAN	339.4	256.5	252.7	594.8	124.1	448.3	868.0
	%NORMAL	87.5	101.5	87.3	123.6	89.8	116.4	123.9

NIA (MAIN) Chartheder Release MVES Overlander Release Tetal Releases	0.00 0.00 44.34 2.66	15.04 2.00 43.75 -3.25	28.70 -1.30 43.40 -3.60	32.44 -7.56 37.21 -8.79	41.25 1.25 38.94 -7.06	41.90	1-30 65.78 35.78 40.81 -5.19	88.95 44.7 41.20 -4.80	35.11 -4.89 45.45 -0.55		40.00	35.00 47.00		10.00	10.0
Over/Under Release MVSS Overlander Release	0.00 44.34 2.66	2.00 43.75	-1.30 43.40	-7.56 37.21	1.25 38.94	6.62 41.90	35.78 40.81	44.7 41.20	-4.89 45.45	-0.94 46.12					
Over/Under Release MVSS Overlander Release	0.00 44.34 2.66	2.00 43.75	-1.30 43.40	-7.56 37.21	1.25 38.94	6.62 41.90	35.78 40.81	44.7 41.20	-4.89 45.45	-0.94 46.12					
MVIII Oreshader Release	44.34 2.66	43.75	43.40	37.21	38.94	41.90	40.81	41.20	45.45	46.12	47.00	47.00	47.00	47.00	46.0
Orcalander Rolesco	2.66										47.00	47.00	47.00	47.00	46.0
		-3.25	-3.60	-8.79	-7.06	4.10	-5.19	-4.80	-0.55	0.12					
Total Releases															
Total Releases															
	44.34	58.79	72.10	69.65	80.19	65.28	101.56	130.15	80.56	82.06					
						Cub	ic Meters per Se	cond (CMS)							
Augst laffow	14.61	23.70	107.32	61.81	56.99	61.28	202.98	139.12	67.89	35.94	34.78	21.79	17.07	24.26	38.
t of Historrical	35%	35%	157%	71%	70%	72%	141%	100%	139%	103%	100%	100%	100%	100%	100
United laffor	16.54	9.35	13.54	15.33	16.52	16.96	13.06	15.63	16.69	0.00	13.25	11.27	8.08	8.93	9.
& of Historical	167%	74%	108%	114%	160%	127%	84%	104%	119%	0%	100%	100%	100%	100%	100
220 7						210.91	212.28	212.95							

Tropical Cyclone Forecast

MONTH	NUMBER OF TC
FEBRUARY 2018	0 OR 1
MARCH 2018	0 OR 1
APRIL 2018	0 OR 1
MAY 2018	1 OR 2
JUNE 2018	1 OR 2
JULY 2018	2 TO 4

LEGEND:

81 - 120 near normal

< or =40% way below normal

Dams and Lakes in (mm) and (%N)

FORECAST WATERSHED RAINFALL (FEBRUARY - JULY 2017)											
	NAME	Angat Watershed	Lake Buhi	Lake Lanao	Magat Watershed	Malinao Watershed	Pantabangan Watershed	San Roque Cascade WS			
	MIN	14.1	199.9	75.6	0.0	89.1	30.6	6.1			
FEBRUARY	MAX	95.0	308.3	109.4	51.0	95.1	100.0	16.1			
FEBRUARY	MEAN	48.5	256.0	85.2	14.9	92.2	58.8	12.8			
	%NORMAL	158.6	125.6	123.0	98.0	127.0	111.1	77.4			
	MIN	14.9	144.9	47.3	14.1	74.1	44.3	31.9			
MARCH	MAX	68.1	205.4	97.0	65.9	75.3	98.1	42.1			
IVIARCH	MEAN	35.9	175.5	72.8	37.3	74.8	66.4	39.4			
	%NORMAL	90.5	106.8	99.1	135.0	111.6	123.4	107.5			
	MIN	26.7	59.6	34.5	42.3	45.8	56.8	54.3			
APRIL	MAX	85.1	111.3	102.8	100.3	58.6	129.6	77.2			
APRIL	MEAN	49.1	86.8	68.9	70.5	51.1	88.8	72.8			
	%NORMAL	61.4	56.2	71.6	75.1	99.2	65.0	72.1			
	MIN	231.9	169.2	125.4	221.7	110.5	199.8	312.2			
	MAX	258.4	220.6	259.8	356.2	125.8	264.9	403.4			
MAY	MEAN	245.2	200.0	195.9	290.5	117.7	234.4	369.5			
	%NORMAL	117.9	118.0	102.9	125.1	161.3	132.9	119.6			
	MIN	245.1	235.1	196.5	168.9	145.4	192.9	335.5			
JUNE	MAX	335.1	264.1	295.8	347.1	151.7	276.4	413.6			
JUNE	MEAN	286.4	253.3	256.1	261.5	148.2	222.5	375.0			
	%NORMAL	107.3	119.1	93.9	88.2	120.9	83.9	85.8			
	MIN	256.4	247.6	212.2	343.3	119.8	307.6	754.0			
JULY	MAX	425.8	262.1	284.4	815.2	129.2	608.7	961.5			
JULY	MEAN	339.4	256.5	252.7	594.8	124.1	448.3	868.0			
96	%NORMAI	87.5	101.5	87.3	123.6	202	116.4	123.9			

Angat Reservoir Operation Rule (2009)

FLOOD CONTROL ZONE

Above Elev. 212 m (dry)

Above Elev. 210 m (wet)

Elev. 212 m (dry)

Elev. 210 m (wet)

CONSERVATION ZONE

(Irrigation, municipal and power use)

Elev. 180 m

DROUGHT ZONE

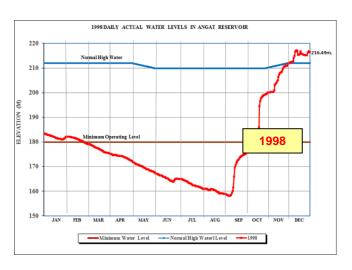
Elev. 160 m

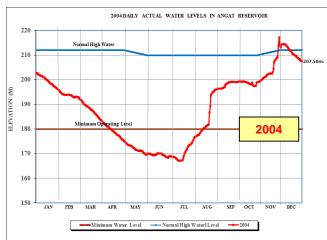
Elev. 120 m

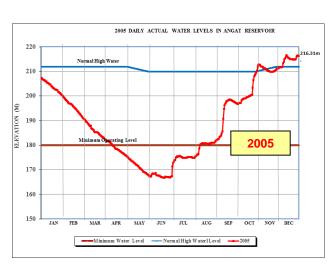
Flood Operation and Management

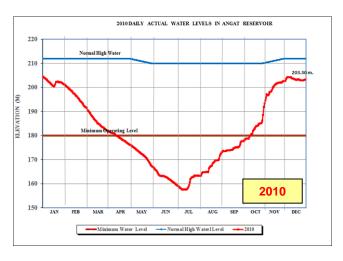
Releases:

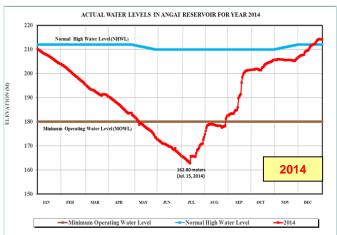
- Irrigation thru main turbines
- Water supply thru auxiliary turbines

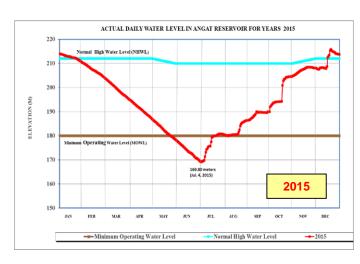

Releases:


 Water supply thru auxiliary turbines


Releases:


Water supply thru low level outlet


Angat Operation Curves (El Nino Years)



- > Environmental / Ecological Study of possible effect or impact of the hydropower project on the river basin system.
- > Run-off-the- River type hydropower projects
- Water Quality Parameters
 - Hydrological Simulations (HECRAS)
 - Meteorological data (available daily annual from NASA Satellite Data, Air Temperature, relative humidity, Solar Radiation, Atmospheric Pressure, and Wind Speed)
 - Dissolved Oxygen (prescribed limit in the policy guidelines)
 - Temperature (simulated temperature rise)

